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Abstract. We have substantially extended the series for the number of self-avoiding walks and
the mean-square end-to-end distance on the simple cubic lattice. Our analysis of the series gives
refined estimates for the critical point and critical exponents. Our estimates of the exponents γ and
ν are in good agreement with recent high-precision Monte Carlo estimates, and also with recent
renormalization group estimates. Critical amplitude estimates are also given. A new, improved
rigorous upper bound for the connective constant µ < 4.7114 is obtained.

1. Introduction

A self-avoiding walk (SAW) can be defined as a connected path on a lattice which has no
self-intersections. Let cn denote the number of n-step SAWs, distinct up to a translation. It is
known that cn ∼ µn, where µ = 1/xc is known as the connective constant and xc is known as
the critical point. It is universally accepted, though not proved, that cn ∼ µnnγ−1.

Traditionally, interest centres on two generating functions,

C(x) =
∑

n�0

cnx
n ∼ A0(x) + A1(x)(1 − µx)−γ (1)

and

R(x) =
∑

n�0

ρnx
n ∼ B0(x) + B1(x)(1 − µx)−γ−2ν (2)

where

ρn =
cn∑

i=1

r2
i . (3)

Here ri is the Euclidean distance between the endpoints of the ith SAWs. The mean-square
end-to-end distance is then defined by 〈R2〉n = ρn/cn.

As well as its importance as the n → 0 limit of an O(n) model, the enumeration of SAW
on various lattices is an interesting combinatorial problem in its own right. It is nicely reviewed
in [13, 16].

Despite strenuous effort over the past 50 years or so this problem has not been solved on
any regular two- or three-dimensional lattice. However, for the hexagonal lattice the critical
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point, x2
c = 1/(2 +

√
2) as well as the critical exponent for the related problem of self-avoiding

polygons (SAPs) α = 1
2 are known exactly [19], though non-rigorously. Very firm evidence

exists from previous numerical work that the exponents are universal for regular lattices in any
dimension, so in particular α = 1

2 for all two-dimensional lattices [8,11,14]. Other exponents
for the two-dimensional problem are also exactly known. The conformal invariance of the
system implies that, for regular two-dimensional lattices, the critical exponents are rational,
and we also know that the critical points for the two-dimensional model are algebraic.

For three-dimensional systems we still expect universality of exponents, but have no reason
to believe that the critical points are algebraic or that the exponents are rational. In order to
estimate the critical parameters, such as the critical point, critical exponent and amplitude(s),
one traditionally resorts to numerical methods. For many problems the method of series
expansions is the most powerful method of approximation. For other problems Monte Carlo
methods are superior, while for critical exponents the renormalization group and other field-
theoretical methods have achieved stunning precision.

However, field theoretical methods are under-pinned by an explicit belief in universality,
and it is important that estimates of critical points and critical exponents from series and Monte
Carlo studies, that make no such assumption, should be compared with the field theory based
predictions.

2. Generation of series

Algorithm. The MacDonald algorithm [17] consists of two main parts, (a) the generation
of SAWs referred to here as base chains and (b) a process of double concatenation where
smaller chains are added to both ends of the base chain. There are several symmetry features
used to speed up the algorithm constructing the base chains. These include the use of 6-point
symmetry about the origin, mirror symmetry in the x–y and x–z planes since the first step is
always along the x-axis, and two-way reverse symmetry which is considering the endpoint
as the origin and noting if a new chain is thus generated. A minimum reduction by a factor
from 6 to a possible 48 (6 × 4 × 2) in the number of chains to be directly computed may
thus be achieved. Shorter chains are then added to both ends to obtain longer chains, all the
while ensuring that the self-avoiding property is not violated. Let us assume as an example
we need to enumerate walks of length 26. Base chains are of length 14 and shorter end-chains
of length 6. This is done in the following manner:

(1) Precompute a list A; each item of this list corresponds to a particular SAW of length 6
which can be added to the base chain. Each item in the list A is itself a list of co-ordinates
(x, y, z) of all the points in the corresponding walk of length 6.

(2) Precompute a second list B[p] which for a given point p lists which SAWs of length 6,
with reference to list A, go through that point. The points p comprise the set of all points
within 6 units of the origin, i.e the sum of the absolute values of its coordinates is less
than or �6.

(3) Then method (a) described above is used to construct SAW of length 14, but extra
information is stored during the recursive construction of the base chain. This information
is the number of points of intersection the 6 unit SAW, generated in A, has with the current
base chain within 6 units of the origin of the base chain. This is done by using list B. If a
point added to the base chain is within 6 units of the origin, then the intersection list must
be updated by incrementing by one all entries which correspond to 6-unit SAWs which
go through the new point. The entries are decremented when the point is deleted from the
base chain during the recursive search. After the construction of each base chain we have
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Table 1. The number, cn, of n-step SAW and the sum of the squares of their end-to-end distances
ρn on the simple cubic lattice.

n cn ρn

0 1 0
1 6 6
2 30 72
3 150 582
4 726 4 032
5 3 534 25 556
6 16 926 153 528
7 81 390 886 926
8 387 966 4 983 456
9 1 853 886 27 401 502

10 8 809 878 148 157 880
11 41 934 150 790 096 950
12 198 842 742 4 166 321 184
13 943 974 510 21 760 624 254
14 4 468 911 678 11 274 379 663
15 21 175 146 054 580 052 260 230
16 100 121 875 974 2 966 294 589 312
17 473 730 252 102 15 087 996 161 382
18 2 237 723 684 094 76 384 144 381 272
19 10 576 033 219 614 385 066 579 325 550
20 49 917 327 838 734 1 933 885 653 380 544
21 235 710 090 502 158 9 679 153 967 272 734
22 1 111 781 983 442 406 48 295 148 145 655 224
23 5 245 988 215 191 414 240 292 643 254 616 694
24 24 730 180 885 580 790 1 192 504 522 283 625 600
25 116 618 841 700 433 358 5 904 015 201 226 909 614
26 549 493 796 867 100 942 29 166 829 902 019 914 840

a list of 6-unit SAWS which can be added to the beginning without self-overlap. The end
of the base chain is examined in a similar way to determine how many 6-unit SAWS can
be added. A check is done to make sure adding a 6-unit chain to the end does not preclude
adding certain ones to the beginning. This is possible when the endpoints of the base
chain are within 12 units of each other. We are now able to calculate how many SAWS of
length 26 have this base as their middle 14 segments. By summing over all possible bases
we obtain C26. Further details of the algorithm are discussed in [17].

The end-to-end distance is calculated by using list B to see which SAWs from list A may
be added to the base chain. List A tells us the coordinates of the end points, thus list A is used
for adding precomputed chains to both ends of the base chain.

The number of terms in the simple cubic series has been extended from the previous
maximum 23 [17] to 26 for the CN series and from 20 to 26 for the

∑
CNR

2
N series [9].

The series for both SAW and squared end-to-end distances are given in table 1.

3. Analysis of the series

We first analysed both series by the numerical method of differential approximants [10]. In
table 2 we have listed estimates for the critical point xc and exponent γ from the series for
the simple cubic lattice SAW generating function. The estimates were obtained by averaging
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Table 2. Estimates for the critical point xc and exponent γ obtained from first- and second-order
inhomogeneous differential approximants to the series for the simple cubic lattice SAW generating
function. T is the number of non-defective approximants used with the given number of terms N .

First-order DA Second-order DA

N xc γ T xc γ T

14 0.213 5150(676) 1.163 67(968) 5 0.213 5011(232) 1.161 67(435) 3
15 0.213 4858(920) 1.159 83(1376) 3 0.213 5073(172) 1.164 07(363) 4
16 0.213 5037(379) 1.162 71(692) 6 0.213 5052(333) 1.163 05(410) 4
17 0.213 5088(321) 1.163 47(648) 8 0.213 5018(28) 1.162 46(72) 2
18 0.213 4939(335) 1.160 45(544) 12 0.213 5070(246) 1.163 45(454) 6
19 0.213 4824(310) 1.157 89(732) 8 0.213 4999(224) 1.162 20(442) 8
20 0.213 4994(146) 1.161 96(369) 11 0.213 4995(60) 1.162 01(128) 6
21 0.213 4961(37) 1.161 13(108) 11 0.213 4958(40) 1.161 15(104) 8
22 0.213 4967(17) 1.161 31(51) 8 0.213 4969(12) 1.161 39(36) 7
23 0.213 4962(5) 1.161 159(18) 6 0.213 4973(45) 1.161 52(156) 6
24 0.213 4958(4) 1.161 01(13) 7 0.213 4960(11) 1.161 09(36) 6
25 0.213 4950(12) 1.160 77(41) 6 0.213 4944(28) 1.160 57(96) 3
26 0.213 4947(7) 1.160 66(30) 9 0.213 4942(7) 1.160 43(31) 3

values obtained from first-order [L/J ;M] and second-order [L/J ;M;K] inhomogeneous
differential approximants. Using the first N terms of the series, for fixed N we obtained a
number of approximants, and hence the same number of estimates of the critical point and
critical exponent. We then averaged over those non-defective approximants which lay within
a reasonable distance of the mean—some 6 standard deviations. We used approximants such
that the difference between J , M and K did not exceed 2. These are therefore ‘diagonal’
approximants. Some approximants were excluded from the averages because the estimates
were obviously spurious. The errors quoted reflect the spread (basically one standard deviation)
among the included approximants. Note that these error bounds should not be viewed as a
measure of the true error as they cannot include systematic sources of error. We discuss further
the systematic error below. If we were to accept these results at face value—and we argue
below that we should not—we would conclude that xc = 0.213 494(1) and γ = 1.1604(5).

In an earlier paper [9], we analysed the same series but to length 20 terms. Based on
that series, and the same method of analysis as above, we concluded that xc = 0.213 497(10)
and γ = 1.1613(21). While the errors include our newer values, it is clear that the central
estimates for both xc and γ have declined. What is happening here is that we need significantly
longer series to really reach the asymptotic regime. Monte Carlo studies [15] reach similar
conclusions. It is pointed out in [15] that as corrections-to-scaling are much stronger in three
dimensions than in two, much longer chains were needed to give believable, convergent results.

When we analyse the series using unbiased and biased Padé approximant methods we
observe striking apparent convergence to xc = 0.213 4987(2) and γ = 1.161 93(1). Although
this is tempting to believe, the evidence that such series estimates can be very slow to truly
converge is now quite substantial.

We have explicit evidence for this in the case of the simpler problem of SAP on the square
lattice. The problem is simpler because there are no non-analytic corrections to scaling [7,14],
and we know the exact value of the critical exponent. In [14] we presented a new algorithm
which permitted a radical extension of the series to 90 terms. A careful analysis of this very
long series showed a systematic shift in estimates of critical parameters for 50, 60, 70 and
80 terms, seemingly asymptoting to unchanged estimates at around 100 terms! Given the
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Table 3. Estimates for the critical point xc and exponent γ obtained from first- and second-
order inhomogeneous differential approximants to the series for the bcc lattice Ising model high-
temperature susceptibility series. T is the number of non-defective approximants used with the
given number of terms N .

First-order DA Second-order DA

N xc γ T xc γ T

11 0.156 1014(66) 1.2456(15) 3 — — 0
12 0.156 1241(101) 1.2488(17) 5 0.156 1258(57) 1.2490(11) 2
13 0.156 0966(438) 1.2443(73) 7 0.156 1158 1.2472 1
14 0.156 0930(124) 1.2438(38) 10 0.156 0977 1.2446 1
15 0.156 0899(129) 1.2426(30) 11 0.156 1001(99) 1.2451(26) 4
16 0.156 0952(95) 1.2438(25) 12 0.156 0991(68) 1.2448(17) 6
17 0.156 0954(49) 1.2439(15) 9 0.156 0962(32) 1.2441(10) 7
18 0.156 0950(21) 1.2437(66) 10 0.156 0938(65) 1.2431(31) 7
19 0.156 0938(15) 1.2434(52) 7 0.156 0976(66) 1.2444(14) 2
20 0.156 0919(11) 1.2427(42) 8 0.156 0945(82) 1.2432(28) 6
21 0.156 0918(8) 1.2428(37) 7 0.156 0934(78) 1.2431(36) 5

presence of non-analytic correction-to-scaling terms for the three-dimensional version of the
problem, we could reasonably expect that similarly long series would be needed in that case
before the asymptotic regime is reached.

A visual inspection of table 2 clearly reveals a systematic shift of critical parameters with
increasing order of the series. How do we extrapolate this trend? One way is to look at the
analogous series for the three-dimensional Ising model susceptibility, for which, by virtue
of numerous high-precision Monte Carlo estimates, we have a rather precise estimate of the
critical exponent. Furthermore, we expect similar non-analytic scaling corrections for both
the Ising and SAW problem. (RG theory predicts one to be a little more than 0.5, and the other
a little less.)

Unfortunately the sc Ising susceptibility series is only known to 21 terms [3], which is
well short of the 26 terms presented here for SAW. However, we also have 21 terms for the
body-centred cubic (bcc) susceptibility series [3, 18], which is roughly equivalent in length
to a 26 term sc series, bearing in mind the higher co-ordination number of the bcc lattice.
Analysing that series in the same way, we obtain the results shown in table 3 and find the same
trend as observed with the sc SAW series. The last approximants suggest vc = 0.156 092,
and γ = 1.242 75. But for the Ising model γ ≈ 1.238, a downward shift of about 0.005. A
plot of the estimates of the exponent versus the critical point displays considerable linearity,
so this can be invoked to determine one critical parameter if the other is known. So assuming
γ = 1.238, the linearity of the plot of approximants gives vc = 0.156 078, a shift of 0.000 014.

In [3] a 21 term SAW series for the bcc lattice is also given, and direct application of
differential approximants also gives rise to estimates of the critical exponent and critical point
which are slowly decreasing as the number of available terms increases. A more careful
analysis [3] gives the estimates γ = 1.1582(8) and ν = 0.5879(6) in that case.

For sc SAWS, similar linearity is observed. In figure 1 we show the differential
approximant estimates of the critical exponent and critical point, as tabulated in table 2. The
RG and field theory estimates for γ are around 1.158, a shift in γ from our direct estimate
of 0.0024. Invoking linearity, as discussed above, then gives an estimate of xc of 0.213 488,
which is in fact rather less than the change found for the bcc Ising susceptibility series.

Much of the change in the critical parameters with increased series length is presumably
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Figure 1. Estimates of γ and critical point, showing linear dependence.

due to the presence of nonlinear confluent terms. To take this into account, we have also tried to
estimate the critical temperature by using two different variants of the ratio method, using only
the approximate value of the confluent exponent as biasing input. The first method, due to Zinn-
Justin [21, 22] relies on a sequence of nonlinear transformations to estimate the critical point.
The original papers contain minor errors, but the corrected equations are available in [10].
Using this method, notably equation (2.30) of [10], one obtains a sequence of estimates of
xc with correction terms of order O(1/n1+θ ). Here θ is the correction-to-scaling exponent,
estimated variously at between 0.47 and 0.48 for the SAW model. For our purposes the
value is not critical—even 0.5 would suffice—and one extrapolates the estimates of xc against
1/n1+θ . This results in a linear plot, with very minor odd–even oscillations characteristic
of a loose packed lattice. Extrapolating alternate pairs gives estimates of 1/xc of between
4.6840 and 4.6841. Taking the average gives xc = 0.213 4905(23). Similarly, a modified
linear extrapolation method can also be effectively used. In this method one first forms the
ratios of coefficients rn = cn/cn−2, where the ratio of alternate terms is used to minimize the
effect of oscillations caused by a singularity on the negative real axis. One then forms the
sequence

√
nrn − (n − 1)rn−1 which should also approach 1/xc linearly when plotted against

1/n1+θ . Here the effect of odd and even extrapolants is more marked, but extrapolating each
subsequence linearly, one again obtains 1/xc = 4.684 05(5).

A variation of the method of differential approximants that specifically biases
approximants with the assumed value of the confluent exponent has been devised by Butera and
Comi [3]. In this method one constructs first-order inhomogeneous differential approximants,
which are biased to have a confluent exponent at the chosen value of θ and a singularity at a
chosen value of xc. By plotting estimates of the critical exponent γ , against xc, the effect of the
uncertainty in both xc and θ can be estimated. This particular analysis gives [4] γ = 1.1585(5).

Thus all methods that carefully take into account corrections-to-scaling, and the approach
to the asymptotic limit, give good agreement.

We turn now to the asymptotic form of the coefficients. We expect that the asymptotic
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form for the coefficients of the SAW generating function will consist of two parts. These
are the dominant ferromagnetic contribution, and a sub-dominant contribution from the
antiferromagnetic singularity. The ferromagnetic singularity is characterized by the exponent
γ while the antiferromagnetic exponent is characterized by the same exponent as the internal
energy, which is usually denoted 1 − α. Both the ferromagnetic and antiferromagnetic parts
have sub-dominant terms with exponent given by the correction-to-scaling exponent θ . Hence
the expected asymptotic form of the coefficients is

cnx
n
c ∼ nγ−1[a0 + a1/n

θ + a2/n + a3/n
θ+1 + a4/n

2 + · · ·]
+(−1)nnα−2[b0 + b1/n

θ + b2/n + · · ·] (4)

where the RG estimate of α is 0.235. While we have used this estimate in our analysis, we
could have made use of the hyperscaling relation dν = 2 − α. Together with the estimate of
ν = 0.5875 which we subsequently obtain, this givesα = 0.2375. Use of this value would give
almost indistinguishable results in our subsequent analysis. There should also be correction
terms with exponent 2θ and so on, but as θ is close to 0.5, these will be indistinguishable in
our analysis from analytic corrections. That is to say, a term O(n−2θ ) behaves very similarly
to a term of O(1/n).

We have fitted the available data to the above form for a range of values of the critical
exponent 1.160 � γ � 1.155. In each case we tuned the critical point to yield the most stable
estimates of the amplitudes. The results are shown in table 4. In all cases very stable fits
are achieved, which suggests that our assumed asymptotic form is basically correct. It also
shows that good results can be achieved for a range of values of the critical parameters by
varying them to stabilise the amplitude sequences. This approach was shown to be appropriate
for the much longer two-dimensional SAP series [14]. That is to say, we look for maximum
stability among the last five estimates, and that is found for γ = 1.1585, and xc = 0.213 492.
However, we cannot, on the basis of this analysis completely rule out other values of γ in the
range studied. The leading amplitudes a0 = 1.205, and b0 = 0.080 also follow from this
analysis, but the estimate of a0 is seen to depend on the estimate of γ , though that of b0 is
relatively insensitive to small shifts in γ . Writing the walk generating function as

C(x) =
∑

cnx
n ∼ A0(x) + A1(1 − µx)−γ + D0(1 + µx)1−α (5)

it follows that A1 = a0$(γ ) ≈ 1.121 and D0 = b0$(α − 1) ≈ −0.40.
We also analysed the series for the squared end-to-end distance by the method of (unbiased)

differential approximants, but found that almost all approximants making use of our newly
found coefficients were defective. A biased analysis, using the above estimate of the critical
point, also produced defective approximants from almost all entries using the new coefficients.
A coefficient by coefficient quotient of the two series, that is an analysis of the series whose
coefficients are given by ρn/cn, which will have critical point exactly 1.0, and exponent 2ν was
also carried out. The differential approximants were again almost all defective. However, we
can use our estimate of the critical point obtained from the above analysis of the SAW generating
function in an analysis of the asymptotic form of the coefficients, bypassing the differential
approximant analysis. So, tentatively accepting the estimates of the critical parameters found
in our SAW analysis, we repeated the above analysis mutatis mutandis of the series for the sum
of the squared end-to-end distances. In this way, we obtained exponent estimates in satisfying
agreement with recent high-precision Monte Carlo estimates [15]. The appropriate asymptotic
form in this case is

ρnx
n
c ∼ nγ+2ν−1[d0 + d1/n

θ + d2/n + d3/n
θ+1 + d4/n

2 + · · ·]
+(−1)nnα−2[e0 + e1/n

θ + e2/n + · · ·]. (6)
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Table 4. Sequences of amplitudes for different assumed values of the critical exponent γ and
connective constant µ for the SAW series. N is the maximum order of the series used in the
analysis.

N a0 a1 a2 a3 a4 b0 b1 b2

xc = 0.213 493
γ = 1.160
13 1.187 41 0.0670 −0.2876 0.7084 −0.4417 −0.0756 −0.0508 0.1523
14 1.195 96 −0.0295 0.1950 −0.2681 0.3048 −0.0703 −0.0812 0.2002
15 1.205 27 −0.1395 0.7743 −1.4969 1.2939 −0.0760 −0.0467 0.1429
16 1.194 85 −0.0111 0.0662 0.0710 −0.0288 −0.0824 −0.0065 0.0732
17 1.192 65 0.0171 −0.0958 0.4441 −0.3574 −0.0810 −0.0153 0.0891
18 1.193 15 0.0104 −0.0554 0.3477 −0.2690 −0.0807 −0.0174 0.0930
19 1.192 31 0.0220 −0.1277 0.5260 −0.4385 −0.0802 −0.0210 0.1000
20 1.192 96 0.0128 −0.0682 0.3745 −0.2895 −0.0798 −0.0238 0.1058
21 1.193 17 0.0097 −0.0477 0.3208 −0.2350 −0.0799 −0.0229 0.1038
22 1.192 76 0.0158 −0.0894 0.4333 −0.3527 −0.0802 −0.0210 0.0998
23 1.192 82 0.0149 −0.0835 0.4169 −0.3351 −0.0802 −0.0207 0.0992
24 1.192 72 0.0165 −0.0946 0.4484 −0.3699 −0.0803 −0.0203 0.0982
25 1.192 71 0.0166 −0.0956 0.4512 −0.3731 −0.0803 −0.0203 0.0983
26 1.192 67 0.0174 −0.1013 0.4684 −0.3930 −0.0803 −0.0201 0.0977

xc = 0.213 492
γ = 1.1585
13 1.198 69 0.0289 −0.2030 0.5998 −0.3840 −0.0756 −0.0506 0.1519
14 1.207 41 −0.0695 0.2895 −0.3967 0.3777 −0.0702 −0.0815 0.2006
15 1.216 89 −0.1815 0.8790 −1.6471 1.3842 −0.0760 −0.0465 0.1426
16 1.206 55 −0.0540 0.1764 −0.0915 0.0719 −0.0823 −0.0068 0.0736
17 1.204 44 −0.0270 0.0211 0.2662 −0.2431 −0.0810 −0.0151 0.0888
18 1.205 04 −0.0350 0.0690 0.1519 −0.1384 −0.0807 −0.0176 0.0935
19 1.204 27 −0.0244 0.0032 0.3143 −0.2927 −0.0802 −0.0209 0.0998
20 1.205 00 −0.0348 0.0698 0.1446 −0.1259 −0.0798 −0.0240 0.1062
21 1.205 28 −0.0388 0.0966 0.0741 −0.0543 −0.0799 −0.0228 0.1037
22 1.204 93 −0.0336 0.0612 0.1698 −0.1544 −0.0801 −0.0212 0.1003
23 1.205 04 −0.0353 0.0730 0.1372 −0.1193 −0.0802 −0.0207 0.0991
24 1.205 00 −0.0346 0.0678 0.1518 −0.1354 −0.0802 −0.0205 0.0987
25 1.205 03 −0.0352 0.0722 0.1392 −0.1211 −0.0803 −0.0203 0.0982
26 1.205 03 −0.0352 0.0719 0.1399 −0.1219 −0.0803 −0.0203 0.0982

xc = 0.213 491
γ = 1.1570
13 1.209 68 −0.0068 −0.1269 0.5051 −0.3349 −0.0756 −0.0504 0.1517
14 1.218 55 −0.1068 0.3734 −0.5073 0.4389 −0.0702 −0.0818 0.2010
15 1.228 15 −0.2203 0.9706 −1.7742 1.4587 −0.0760 −0.0464 0.1424
16 1.217 85 −0.0934 0.2712 −0.2254 0.1521 −0.0823 −0.0070 0.0740
17 1.215 79 −0.0670 0.1196 0.1236 −0.1552 −0.0810 −0.0152 0.0888
18 1.216 45 −0.0758 0.1720 −0.0016 −0.0405 −0.0806 −0.0179 0.0939
19 1.215 72 −0.0657 0.1094 0.1531 −0.1875 −0.0802 −0.0210 0.0999
20 1.216 49 −0.0766 0.1797 −0.0261 −0.0113 −0.0797 −0.0243 0.1067
21 1.216 80 −0.0811 0.2091 −0.1031 0.0669 −0.0799 −0.0230 0.1038
22 1.216 47 −0.0762 0.1761 −0.0142 −0.0261 −0.0801 −0.0215 0.1007
23 1.216 60 −0.0781 0.1893 −0.0508 0.0132 −0.0802 −0.0209 0.0994
24 1.216 57 −0.0776 0.1859 −0.0411 0.0025 −0.0802 −0.0208 0.0991
25 1.216 61 −0.0783 0.1907 −0.0550 0.0183 −0.0802 −0.0206 0.0987
26 1.216 61 −0.0784 0.1913 −0.0568 0.0205 −0.0802 −0.0206 0.0987
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Table 4. (Continued)

N a0 a1 a2 a3 a4 b0 b1 b2

xc = 0.213 490
γ = 1.1550
13 1.224 35 −0.0543 −0.0268 0.3813 −0.2712 −0.0756 −0.0503 0.1514
14 1.233 40 −0.1563 0.4835 −0.6513 0.5181 −0.0701 −0.0821 0.2015
15 1.243 16 −0.2716 1.0903 −1.9387 1.5543 −0.0760 −0.0463 0.1422
16 1.232 91 −0.1453 0.3943 −0.3975 0.2542 −0.0822 −0.0074 0.0745
17 1.230 91 −0.1197 0.2469 −0.0581 −0.0446 −0.0810 −0.0152 0.0888
18 1.231 63 −0.1293 0.3046 −0.1959 0.0816 −0.0806 −0.0182 0.0944
19 1.230 93 −0.1197 0.2450 −0.0487 −0.0583 −0.0801 −0.0211 0.1001
20 1.231 75 −0.1313 0.3194 −0.2381 0.1280 −0.0797 −0.0246 0.1072
21 1.232 08 −0.1360 0.3508 −0.3206 0.2118 −0.0799 −0.0232 0.1042
22 1.231 78 −0.1315 0.3200 −0.2374 0.1247 −0.0800 −0.0218 0.1013
23 1.231 90 −0.1335 0.3337 −0.2754 0.1656 −0.0801 −0.0212 0.1000
24 1.231 88 −0.1331 0.3312 −0.2684 0.1579 −0.0801 −0.0211 0.0997
25 1.231 91 −0.1336 0.3350 −0.2794 0.1704 −0.0801 −0.0210 0.0994
26 1.231 91 −0.1337 0.3353 −0.2802 0.1713 −0.0801 −0.0210 0.0994

We expect on universality grounds that the correction-to-scaling exponent θ is the same as for
SAWs. The behaviour of the antiferromagnetic singularity has not, as far as we know, been
considered for this problem. Our differential approximant analysis of this series allows us to
estimate this exponent, and we find it to be in agreement with the corresponding quantity for
SAWs. Accordingly, we have assumed this to be the case. As the analysis is not sensitive to a
small variation in this exponent, this is not a vital assumption. In this analysis we have fixed
the value of the connective constant to that found in the analysis of the SAW series.

Using our estimate of xc quoted above, we show in table 5 the estimates of the amplitudes
d0, . . . , d3, and e0, e1, e2 obtained with µ = 4.684 01 and γ + 2ν = 2.3334. We find
d0 = 1.476, d1 = 0.520, d2 = 0.580, d3 = 0.27 and e0 = 0.05, e1 = 0.00 and e2 = −0.08,
where we expect errors to be confined to the last quoted digit. Using the value of γ = 1.1585
estimated above, we find ν = 0.5875. This is in unexpectedly good agreement with the recent
high-precision Monte Carlo estimate [15] ν = 0.5877 ± 0.0006, and also agrees with recent
renormalization group ε-expansion and d = 3 expansion results, which have central estimates
in the range 0.5875–0.5882. It is also in good agreement with the estimates obtained from the
bcc series [3] of 0.5879(6).

This estimate of ν is rather stable to the assumed value of γ . For example, if we shift the
critical exponent γ to 1.155, then the connective constant µ shifts to 4.8406 as shown above.
Repeating our immediately preceding analysis of the squared end-to-end distance series gives
stability of amplitude estimates for γ + 2ν = 2.3311, or ν = 0.5881. So a 3% shift in γ

produces a shift in ν of less than 0.1%.

4. Rigorous upper bound on µ

Many workers have developed techniques for the establishment of rigorous upper and lower
bounds on the connective constant for SAW on various lattices. The main techniques are
reviewed in [20]. For the simple cubic lattice the best bounds are 4.572 14 < µ < 4.756 [2,12].
Based on the extended enumerations we have given, it is possible to obtain an improved upper
bound using the method of Ahlberg and Janson [1].
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Table 5. Sequences of amplitudes for the square endtoend distance generating function. xc is fixed
at 0.213 492. This sequence is produced with γ + 2ν = 2.3334.

N d0 d1 d2 d3 e0 e1 e2

13 1.475 93 −0.5204 0.5786 −0.2712 0.0303 0.1034 −0.2339
14 1.475 81 −0.5193 0.5749 −0.2673 0.0188 0.1711 −0.3425
15 1.475 73 −0.5185 0.5722 −0.2642 0.0284 0.1122 −0.2433
16 1.475 92 −0.5204 0.5790 −0.2723 0.0552 −0.0595 0.0598
17 1.475 92 −0.5203 0.5789 −0.2721 0.0559 −0.0641 0.0682
18 1.475 94 −0.5206 0.5800 −0.2735 0.0612 −0.1009 0.1386
19 1.475 98 −0.5210 0.5815 −0.2755 0.0537 −0.0471 0.0320
20 1.475 96 −0.5208 0.5808 −0.2745 0.0497 −0.0184 −0.0268
21 1.475 97 −0.5209 0.5812 −0.2751 0.0472 0.0007 −0.0672
22 1.475 97 −0.5208 0.5809 −0.2747 0.0454 0.0150 −0.0985
23 1.475 96 −0.5208 0.5807 −0.2744 0.0467 0.0045 −0.0749
24 1.475 96 −0.5208 0.5806 −0.2742 0.0457 0.0124 −0.0931
25 1.475 96 −0.5207 0.5804 −0.2739 0.0473 −0.0007 −0.0622
26 1.475 95 −0.5207 0.5803 −0.2737 0.0464 0.0068 −0.0803

They prove the result that, if n > 2, the connective constant is less than the positive root of

c1x
n−1 = (cn − (c1 − 2)cn−1)x + (c1 − 2)((c1 − 1)cn−1 − cn).

From the coefficients in the table below, setting n = 26, one immediately obtains the bound
µ < 4.7114. This is a worthwhile improvement on the previous best bound, cited above.

5. Conclusion

We have presented substantially extended series for the SAW and squared end-to-end distance
series, and given a detailed analysis using ratio methods, differential approximants and
asymptotic fitting. Together these three methods provide convincing evidence of agreement
with exponent estimates obtained by other methods. While our preferred estimate of γ at
1.1585 is about 1% higher than the most recent ε-expansion estimates, it is about 1% lower
than corresponding d = 3 expansion estimates. A recent high quality Monte Carlo study [5]
gave γ = 1.1575 ± 0.0006. For the exponent ν our estimates are much more precise, being
encompassed within the range 0.5870 � ν � 0.5881 which is in agreement with almost all
recent MC and RG and series studies. Our estimates are also entirely consistent with those
obtained for the bcc lattice SAW series [3]. The connective constant is much less amenable
to study by other methods, and we estimate xc = 0.213 491 ± 0.000 004, or, equivalently,
µ = 4.684 04±0.000 09. This is perhaps a less precise estimate than some quoted previously,
but the more reliable as a consequence! We note in passing that the traditional methods used in
the past (Padé, direct application of differential approximants and transformations to extract the
correction terms) would have led to consistently misleadingly precise but slightly inaccurate
critical points, exponents and correction to scaling terms [17]. We have also estimated the
critical amplitudes for the ferromagnetic and antiferromagnetic singularities, and these are
found to be A0 ≈ 1.121 and B0 ≈ −0.40 where no confidence limit is quoted, for, as
explained in detail above, our estimates depend on the value of γ chosen. These amplitude
estimates should, however, have errors confined to the last quoted digit if γ is close to 1.1585,
as suggested by our analysis above.

Finally, the extended enumeration data allows us to calculate an improved upper bound
on the connective constant, µ < 4.7114.
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